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Some remarks on the Gauss decompesition for quantum
group G L,(n) with application to g-bosonization
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Abstract. The Gauss decomposition of quantum group G Lg (n) is defined purely algebraically.
The entries of the upper-triangular matrix commutes with those of the lower-triangular one. The
quantum determinaiit is the product of the diagonal matrix elements. This decomposition gives
rise to a new bosonization of the GL4 () in terms of 2n g-osciliators.

In investigating algebraic systems it is often useful to handle their homomorphic realizations .
by means of simpler systems. The representation of Lie algebra generators by creation and
anaihilation operators of bosonic oscillators (bosonization) supplies us with a well known
example. When we furn to the more complicated case of quantum groups and quantum
algebras {1] it is natural to change the usual osciliators to deformed ones (g-oscillators) [2—
6]. The g-bosonization procedure for quantum algebras was given in [5] with sufficient
completeness. However, the situation for quantum groups is quite different. It seems first
attempts to this end have been done for the quantum group GL,(r) only in the special
case g* = 1 [7-9]. In the general case, g € C\{0}, the examples of g-bosonization were
given in [10] and [11] for GL4(2) and GL,(3), respectively. An attempt to generalize
these results to GL,(n) was undertaken in a somewhat complicated fashion in [12]. The
deficiency of this approach [10,12] consists in the use of specific features of the Fock
representation for the g-oscillators. As a result, a wide class of non-Fock representations
(listed, for instance, in [6, 13, 14]) are excluded from consideration. We rust also mention
the interesting works [15, 16] concerned with a similar problem for the matrix psendogroups
S, U(n), which used a somewhat different form of g-oscillators.

In a previous paper [17] we showed that the Gauss decomposition [1} for GL4(2)
suggests g-bosonization in a very simple and purely algebraic way. In this paper we
shall make some remarks on the general properties of the GL,(r} Gauss decomposition
and generalize to this quantum group the algebraic procedure of g-bosonization suggested
earlier [17] for GL,(2). As an illustration of the results we shall consider the GL,(3) case
in some detail. For the other application of the Gauss decomposition see in [22].
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Let us briefly recall some definitions and results of {1]. The quantum group GL,(n) is
defined as an associative unital C-algebra which is generated by n? elements T;; subject to
the commutation relations

LT = qTu Ty Ty = Ty T
TuTy = qTi Ty [Tij, Tig] = ATy Ty

where g € C\{0}, A=¢g—¢~', 1< j<k<n 1<i<!<n Inaddition, GL,(n) is
endowed with a Hopf algebra structure which introduced by three maps: a comultiplication
A, a counit € and an antipode § [1].

Let T = (T;;) be n by n matrix of GL,(n) generators (g-matrix). From the commutation
relations (1) it follows that the quantum (g-)determinant

(1

DT =dety T = 3 (~a¥ | Tioty @
[+ =1

belongs to the centre of the Hopf algebra GL,(n). In the definition (2) the sum is over all
the permutations & of the set (1,2,...,#), and o ({) is length of o. There is additional
assumption: det, T' # 0. Supposing the invertibility of D (7), one can calculate the two-
sided inverse matrix 7!

(T = (D (TN (—g) ™ Dy (M)
where D,(Miy) is a g-determinant of the minor matrix M;; which is obtained from T by

removing of the ith row and kth column. In the case of GLy{(n) the above mentioned
coalgebra maps are specified by the formulas

A(T) =T@)T e(T)=1 STy=71" 3)

where 1 is the unit matrix and (®) refers to the usual matrix multiplication with a tensor
product of matrix elements.
According to the R-matrix approach [1] the equation

RhLL=D0NTR “)

encodes the commutation relations between generators of a quantum group. In this equation
R is a square number matrix of order n%, T is a g-matrixand T} =T ® 1,7 = L® T. The
commutation relations (1) follow from (4) for the R-matrix corresponding to the Lie algebra
si(n) [1]. The Lie group GL(n) can be defined as an endomorphism group of complex
n-dimensional linear space C*. In complete analogy, the quantum group GZL,(n) can be
defined by its co-action & on the related quantum space C7. This view gives the basis of
the non-commutative geometry approach to quantum deformations [18-20].
The Gauss decomposition for the GL,(r) g-matrix T is

T =(Ty) =Dl
where T == {(u;) and Tr = (z;;) are respectively upper- and lower-triangular matrices with
units at their diagonals, and Tp = (A;z), with Ay = 8;:Ap, 15 a diagonal matrix. It is not
difficult to express the ‘old’ generators Tj; in terms of the ‘new’ ones, that is by the elements

of the matrices 71, Tp and 7g. For convenience we shall formulate the main properties of
the Gauss decomposition as follows: ‘

Proposition 1. 'The commutation relations (1) of the quantum group GL,(n) are fulfilled
if the following commutation relations for the elements of the 7i., T and 7y matrices hold:

Apuij = g%~y Ay 1<i, jk<n (5a)
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il = g oy 1<kgn, i<j (5b)
ugay = g g0y, I<ign, £<j (5¢c)
ey =q'5'f"s"'u,ju,-k i<l,k>j (5d)
Uikl —qa"i"a”u;ju,-k = lq’s"“"‘s"‘ugku;j i<, k<j (Se)
[#ik, 2] = [Ai, A =0 1<, ki< , (50
Agzij = gy Ay 1€, j,k<n (58)
zizje = g7 iz 1<kgn, i<j - (5h)
nzy =g Mz 1<ign, k< (5i)
ziezy; = ¢ 220 i<l k>j &7))
Zik2j — g7z = Ag¥ S pay i<l k< J- 7 ) (5&)

Proposition 2. In terms of the ‘new’ generators the quantum determinant Dg(T) =det, T
has the simple form ‘

DT)=detTp =AnAg ... Awy _— (6)
and commutes with every element of the matrices Ty, Tp and Tg.

{Expression (6) for the G L,(2) case was given in [19]). These two propositions can be
checked by direct calculation.

Let us denote T = TpTy, and T = T1,Tp, We would like to stress that the elements
of each of the matrices (7L, Tp, Tk, T and T) form a set closed under the comumutation
reiations (5) and, thus, define a deformed aigebra.

Proposition 3. (2) The commutation relations between the elements of the matrix T (and f)
are determined by the quantum group equation (4} with the same R-matrix as for GLz(n);
{b) There is no R-matrix that gives the commutation relations between the elements of the
matrix Tp (and 71) in the form of (4).

The first part of this proposition can be proved by direct verification. Any attempt to
calculate an appropriate R-matrix from equation (4) in the case of the matrices Tg and Tp
inevitably leads to contradictions. So the algebras defined by the elements of matrices Tg
and Tp, supply us with examples of non-R-matrix quantum deformations.

Using the homomorphic property of a comultiplication in GLg{(r) we can define the
comultiplications in the algebras connected with each of the matrices Tg, 75, 71, T and T'.
(This was done for GL,(2) in [21]). However, such an inherited comultiplication has a -
cumbersome form even for n = 2, 3. Nevertheless, there is a ratural standard (3) Hopf
algebra structure [1] for the algebra generated by the ‘new’ generators,

Proposition 4. (2) The algebra generated by the elements of the matrix T is a Hopf algebra
(under the co-operations defined in (3)) and gives us an example of a new quantum group.
The same is true for T.

(b) The algebra generated by the elements of the matrices Tp, Tp, Ty, is 2 Hopf algebra
under the co-operations defined by the following formulae:

AlA) =A@ 4 A(uij) = E u:kAkAfl ® uyy Alziy) = ZZ:‘k ® A7 Agzy
3 )
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eluy)=elz;)) =0 i>j €(4p) =1
S(Ag) = A;l S(u;j) = A;IA_;(H_I)ij S(Zij) = (Z-I)EJ'AIAJTI-

Proposition 5. The map

X =T@®X  x)=) Tu®x
k=1

defines the co-action of the quantum groups T and T on the quantum space Cg. Moreover,
the maps 3 C" — T(®)C" and 3 : C" - T(®)C" are algebra homomorph1sms and

endow C with a left T- and T-comodule structure, respecuvely

The proof of these two propositions is evident in view of the propositions given above.

Let{ a!, a;, Ni}and'{ b;r, by, My}, i, j = 1<-n be two independent families of mutualiy

commuting g~'- and g-oscillators [2-6] defined by the relations

aal — g 'ala; = g% Nia] = al (Vi + 1) Nig; = a;(N; — 1)
bib] —qblbi =g™ M =BiM;+1)  Mib = b;(M: - D).
Define
0 ik 0 i<k
S ifi =k =11 ifi=k
fug"tala, i<k gng bl ifisk

Ag = g™ M

where

i1

k—1
Niem 3 N;  Ma= ) M

j=itt J=kH
and Njp =0 (M. = 0)if i > (k —2), ( < (k+2)). Then we have

det,,T:In—[A,-i-_-qN‘M N=z":N,- M=Z":Mj.
J=1

i=1 ( j=1

@
®

®

(10)

Proposition 6. Expressions (9), (10) satisfy the commutation relations (5) if the number

coefficients fi; and g;; fulfi] the equations

Jipfu = Fijfu i<k<j<l
[ﬁj.ﬁ'k =rg~! fi i<j<k
8ij 8t = Bkji&il k>i>l>j]
lgijgkf = —GAgkj k>j>i

(11)

In this case equatlons (9),(10) realize g-bosonization of the quantum groups T, Tp, 1o

and, consequently T 7, GL,(n).
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There are several solutions of equations (11). The simplest one is

fii=2x/q &ij = —qh. (12)

It is worth noting that in the present version of GL,(r) g-bosonization 2r independent
deformed oscillators are used. On the other hand, following the methed of [10-12] for this
purpose requires n{n — 1}/2 g-oscillators.

Let us remark that for g-bosonization one can use one type of g-oscillators oniy but in
this case the expressions are not so symmetric.

To illustrate the above results, we consider the quantum group GL,(3) as an example.
The case of GL,(2) studied in [17], is too simple because both matrices Tg and 71, contain
only one non-trivial element. The Gauss decomposition for GL4(3) has the form

I u v A 0 0 1 0 0.
T=NTolk=] 0 1 w 0 B O x 10
0 0 1 0 0 C ¥y z 1

A+uBx+vCy ué-i—sz vC
= Bx +wCy B+wCz wC

Cy Cz C
A 0 O A uB uC
T=Tolx=| Bx B 0 T=Tilh=| 0 B wC
Cy Cz C 0o 0 C
The following non-trivial commutation relations from (5) for the ‘new’ generators are
W = gquy HY = gui gquw — wu = Av
xy =qyx yz =4qzy xz—g lzx = Ay
uB =gBu uC =Cu Au = quA
vC =¢gCv vB = Bv Av=gqvA (13)
wC =qgCw wA =wA Bw=qwB
xB =gBx xC=Cx Ax =gxA
yC=4qCy yB = By Ay =qyA
zC =¢Cz zA = Az Bz =gqzB.

The quantummdetemiinant D,(T) = ABC commutes with all of the ‘new’ generators and,
hence, with T and T. .
Applying the usual comultiplication A(T} = T'(®)T in GL,(3) and denoting

O=y@v+z@uw+l1l@l=ym+tzw+1
E =1+ xus — vz + wp) @ s + 71)
E=(1—-uwE 'L -0 [y — Gruz + 2 )E7'L])

where L = [x; —(x1v2+w2) @1y ], one can obtain the following expressions for inheritable
comultiplication:

A(A) =A KA, A(B) = B1EB, AC)=C10C,
A = uy + Atz(B1E)™ — Ain @7 (s + 2)(BLE) !
A() = v + (Ajva + w1 Bi(x102 + wa)) @71 C?
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Alw) = lwl + Bi(niv2 + wp)Q7' !
A(x) = x3 + (EB2) ' [x1 — (riva + w2) @7 314z
A = %2+ C5' 07 31 Ar + (2 + 21) Bao]
ARy = C5' Q7 (i + 71) By + 22

We recall that 4; = A® 1, 42 = 1® 4, etc. As was pointed out above, there is a
‘natugal’ comultiplication, together with ‘inheritable’ one, in T and T. These two maps are
not equivalent because they give obviously different expression for the element C = Ti3.
Therefore, we ate dealing with new quantum groups.
For the quantum group generated by the elements of the matrices Tk, Tp, Tp, the natural
Hopf alpebra structure defined in proposition 4(b) is given by the following expressions:

AA)=AQA A(B}=B®B A(CY=C®C (14)

Ax) =x®B'A+1®x
AN =yRC I A+z@C'Bx+1Qy (15)
A(Z) =z@C'B+1®z
A =AB'@u+tu®l
Aw) =ACT'@u+uBCl@w+v®l (16)
Aw)=BCT'@u+wel

It is not difficult to check that the matrices

( Al 0 0

7= —gA™x B! 0

\ ¢°A7'(xz —¢qy) —¢B7'z C~!

((A™' —quA™! g7'(uw — ATt

Ti=| 0 B! —g lwB™!

\ 0 0 c-1

are the two-sided inverse matrices of the T and 7, respectively. Therefore, the antipedes
and counits can be determined according to (3). At the element level one has

S(A)=A"" S(By=B"T sc)y=c!
S(x) = —q>A7'Bx = —xA"'B
5(z)=—¢*B~'Cz =—zB7'C

53 =a’A7'C(xz — qy) = zx — NATC

S) = —g 'BuA™! = —BA u

S(w) =—g 'CwB™' = ~CB™'w

S@) =g ' Cluw —A™ = CA™ (uw — v)

e(A)=eB)=2(C)=1 e(u) =s() =&(w) =0 ex)=e(y) =2(2) =
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With these definitions the Hopf algebra axioms [1] are satisfied. As a result, the algebras
associated with T and 7 matrices are endowed with a Hopf algebra structure. Therefore,
they can indeed be considered as new quantum groups.

In conclusion we write down the g-bosonization of the GL,(3) using the solution (12)
of the equations (11). So, taking the three g~ -oscillators (7) and the three g-oscillators (8),
and using (9),(10), one gets

# =g alay v=xrg'gMala, w = Ag~alas
x=—Agblh;,  y=—igg*®blb,  z=-igblh;
A= qu"Ml B= qu—Mz A= qNa—Ms_

For the original GL,(3)-generators this gives
Ti1 = qM—M‘ — qlquz—Mz [a;rdzblbl -+ qN3‘M3aIa3b;b1]
Tio = g [alaag™ 1 — ™5~ alazplp |
Tis = Mg~ ajazg ™M=t
I =—Ag [QNZ_Mzblbl + qus—Ma_Mla:Iasb;bl]
Ty = qu_Mz — }quN3‘M3a;a3b§b2
Ty = Mg N3_M3ala3

Ty = —Mg™ T bla Tp=—aggMble, T =gh
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