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Abstract The Gauss decomposition of quantum group GL,(n) is defined purely algebraically. 
The entries of the upper-triangular matrix commutes with those of the lower-ttiangular one. The 
quantum determinant is the product of the diagonal matrilr elements. This decomposition gives 
rise to a new bosonization of the GL&) in terms of 2n q-oscillators. 

In investigating algebraic systems it is often useful to handle their homomorphic realizations 
by means of simpler systems. The representation of Lie algebra generators by creation and 
annihilation operators of bosonic oscillators (bosonization) supplies us with a well known 
example. When we turn to the more complicated case of quantum groups and quantum 
algebras [l] it is natural to change the usual oscillators to deformed ones (q-oscillators) [2- 
61. The q-bosonization procedure for quantum algebras was given in [5] with sufficient 
completeness. However, the situation for quantum groups is quite different. It seems first 
attempts to this end have been done for the quantum group GL,(n) only in the special 
case q" = 1 [7-91. In the general case, q E C\(O), the examples of q-bosonization were 
given in [lo] and [ll] for GL,(2) and GL,(3), respectively. An attempt to generalize 
these results to GL&) was undertaken in a somewhat complicated fashion in [12]. The 
deficiency of this approach [lo, 121 consists in the use of specific features of the Fock 
representation for the q-oscillators. As a result, a wide class of non-Fock representations 
(listed, for instance, in [6,13,14]) are excluded from consideration. We must also mention 
the interesting works [15,16] concerned with a similar problem for the matrix pseudogroups 
&U@), which used a somewhat different form of q-oscillators. 

In a previous paper [17] we showed that the Gauss decomposition [l] for GLq(2) 
suggests q-bosonization in a very simple and purely algebraic way. In this paper we 
shall make some remarks on the general properties of the GL&) Gauss decomposition 
and generalize to this quantum group the algebraic procedure of q-bosonization suggested 
earlier [17] for GLq(2). As an illushation of the results we shall consider the GL,(3) case 
in some detail. For the other application of the Gauss decomposition see in [22] .  
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Let us briefly recall some definitions and results of [l]. The quantum group GL,(n) is 
defined as an associative unital C-algebra which is generated by n2 elements Tij subject to 
the commutation relations 

ZkEj = ZjEk 
(1) 

where q E C\(O), A = q - q-'. 1 Q j i k < n, 1 < i < 1 < n. In addition, GL,(n) is 
endowed with a Hopf algebra structure which introduced by three maps: a comultiplication 
A, a counit E and an antipode S [l]. 

Let T = (Ti,.) be n by n matrix of GL,(n) generators (q-matrix). From the commutation 
relations (1) it follows that the quantum @)determinant 

zj& = qTik?;j 
Z k q k  = qhkzk [ c j ,  4 k 1  = k c k z j  

n 

D,(T) deb T = x(-q) f (u)  n Ti,(i) (2) 
0 i=l 

belongs to the centre of the Hopf algebra GLq(n). In the definition (2) the sum is over all 
the permutations U of the set (1,2,. . . , n), and U ( I )  is length of U .  There is additional 
assumption: det, T # 0. Supposing the invertibility of D,(T), one can calculate the two- 
sided inverse matrix T-' 

(T-l)ik = (D,(T))-'(-q)'-'D,(M,x) 
where Dq(Mik) is a q-determinant of the minor matrix Mik which is obtained from T by 
removing of the ith row and kth column. In the case of GL,(n) the above mentioned 
coalgebra maps are specified by the formulae 

A(T)  = T(Q)T E ( T )  = 1 S(T) = T-' (3) 
where 1 is the unit matrix and (8) refers to the usual matrix multiplication with a tensor 
product of matrix elements. 

According to the R-matrix approach [l] the equation 

RT,T,=T,TlR (4) 
encodes the commutation relations between generators of a quantum group. In this equation 
R is a square number matrix of order n2, T is a q-matrix and TI = T Q 1, Tz = 1 Q T.  The 
commutation relations (1) follow from (4) for the R-matrix corresponding to the Lie algebra 
sl(n) [l]. The Lie group GL(n) can' be defined as an endomorphism group of complex 
n-dimensional linear space C". In complete analogy, the quantum group GL,(n) can be 
defined by its co-action S on the related quantum space Ci. This view gives the basis of 
the non-commutative geometry approach to quantum deformations [18-20]. 

The Gauss decomposition for the GL&) q-matrix T is 

T = (43 = TLTDTR 

where TL = ( u i k )  and TR = ( z i k )  are respectively upper- and lower-triangular matrices with 
units at their diagonals, and Ti = (A& with Aik = SikAk, is a diagonal matrix. It is not 
difficult to express the 'old' generators & in terms of the 'new' ones, that is by the elements 
of the matrices TL, T, and TR. For convenience we shall formulate the main properties of 
the Gauss decomposition as follows: 

Proposition 1. The commutation relations (1) of the quantum group GL&) are fulfilled 
if the following commutation relations for the elements of the TL, TD and TR matrices hold 

A k q j  = q6 i t -6 i l~~~A~ l < i , j , k < n  (54 
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uikujk = q6:h-4t+1u.  j k  zk 1 < k < n ,  i < j  (5b) 

ufk l l i l  = q6zj-6'i+lu. ', zk l $ f $ n ,  k < j  (5c) 

UikUI j  = qs"-S"UljUik i < l ,  k >  j (54 

[U,, z j l ]  = [Ai ,  A k l  = 0 

Akzij = q611-a ibz . .A  11 k 1 < i ,  j , k < n  (5g) 

Z i j Z i k  l < i < n ,  ' k <  j (Si) 

(5e) 

c5n 

U i k U l j  - 4  6;j-S~ U l j U i k  = hq6"-"UlkU;j i < 1 ,  k < j 

1 < i, j ,  k, I < n 

Z j k z i k  1 < k < n, i < j (5h) 

i < l ,  k >  j (5,1 
Z i k Z f j  - 4 ZljZik = Aq6''-d'k ZlkZij  i c l ,  k <  j .  (54 
Proposition 2. In terms of the 'new' generators the quantum determinant Dq(T) = detq T 
has the simple form 

(6) 

6;k-8;~+1 

S;x-6,, +I 

6"-61. 

Z i k z j k  = 4 

ZikZi j  = 4 

Z i k z l j  = 4 ' Z l j Z i k  

6,-6;; 

D,(T) = detT, = A l l A v .  ... . A ,  

and commutes with every element of the matrices TL, TD and TR. 

(Expression (6) for the GLq(2) case was given in [19]). These two propositions can be 
checked by direct calculation. 

Let us denote T " ~ =  TDTR, and F-= TLTQ We would like to stress that the elements 
of each of the matrices (TL, TD, TR, T, and T )  form a set closed under the commutation 
relations (5) and, thus. define a deformed algebra. 

Proposition 3. (a) The commutation relations between the elements of the matrix T" (and p) 
are determined by the quantum group equation (4) with the same R-matrix as for GLq(n);  
(b) There is no R-matrix that gives the commutation relations between the elements of the 
matrix TR (and TL) in the form of (4). 

The first part of this proposition can be proved by direct verification. Any attempt to 
calculate an appropriate R-matrix from equation (4) in the case of the matrices TR and TL 
inevitably leads to contradictions. So the algebras defined by the elements of matrices TR 
and TL, supply us with examples of non-R-matrix quantum deformations. 

Using the homomorphic property of a comultiplication in GLq(n) we can define $e 
comultiplications in the' algebras connected with each of the matrices TR, T', TL, T and T .  
(This was done for GL&) in [Zl]). However, such an inherited comultiplication has a ' 

cumbersome form even for n = 2.3. Nevertheless, there is a natural standard (3) Hopf 
algebra structure [ 11 for the algebra generated by the 'new' generators. 

Proposition 4. (a) The algebra generated by the elements of the matrix T" is a Hopf algebra 
(under the co-operatio_ns defined in (3)) and gives us an example of a new quantum group. 
The same is m e  for T .  
(b) The algebra generated by the elements of the matrices TR, TD, TL is a Hopf algebra 
under the co-operations defined by the following formulae: 

A ( A ; )  = A i  @3 Ai 

- 

h ( U i j )  = X U i k A k A ; '  @3 U k j  A ( Z i j )  = c z i k  63 A Y ' A k z k j  
k k 
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= ~(zji)  = 0 i > j E(.&) = 1 
S(Ar) = A i i  S(uij) = ALiAj(u-')ij S(zij) = (~.-')ijAtAy 1 . 

Proposition 5. The map 

n 

6(x) = T(@)x & ( X i )  = Zk @Xk 
k i  

defines the co-action of the quantum groups T" and ? on the quantum space C;. Moreover, 
the maps : C: + T"(@)C" and ? : C: -+ F(@)C: are algebra homomorphisms and 
endow C: with a left T"- and T-comodule structure, respectively. 

4, 

The proof of these two propositions is evident in view of the propositions given above. 

Let ( a!, ai,  Ni} an& { bt, bi, Mi), i, j = l+n be two independent families of mutualiy 

(7) 

commuting q-l- and q-oscillators [26]  defined by the relations 

aiai' - q-1arai = q Ni 

bib1 - qblbi = qmM' M.bt I - bi(Mj + 1) Mjbi = bj(Mi - 1). (8) 

Nja! = a!(Nj + 1) Njaj = ai(Ni - 1) 

- t 

Define 
i f i < k  

i f i = k  Zik = i f i = k  (9) 

gjkq-M'kb/bk if i > k 

(10) 

i f i > k  

if i < k 

A .  -8. Nx-MI 
rk - zkq 

where 
k- i  i-I 

j=i+l j*+l 
Nik = Nj Mix = M j  

and Nit = 0 (Mjk = 0)'if i z (k - 2), (i < (k + 2)). Then we have 
n n n 

deb T = n Aii = qN-M N = Z N j  M = E M j .  
i=i j=i j=i 

Proposition 6. Expressions (9),(10) satisfy the commutation relations (5) if the number 
coefficients f ik  and gjk fulfil the equations 

In this case equatio_ns (9),(10) realize q-bosonization of the quantum groups TR, TD, TL 
and, consequently T ,  F, GL,(n). 
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There are. several solutions of equations (11). The simplest one is 

fij = bfq gij = -qb. (12) 
It is worth noting that in the present version of GL,(n) q-bosonization 2n independent 

deformed oscillators are used. On the other hand, following the method of [10-12] for this 
purpose requires n(n - 1)/2 q-oscillators. 

Let us remark that for q-bosonization one can use one type of q-oscillators only but in 
this case the expressions are not so symmetric. 

To illustrate the above results, we consider the quantum group GL,(3) as an example. 
The case of GL,(2) studied in [17], is too simple because both matrices TR and TL contain 
only one non-trivial element. The Gauss decomposition for GL,(3) has the form 

l u u  A 0 0  1 0 0  

0 0  1 o o c  Y Z l  

A+uBx+uCy  uB+vCz VC 
= ( Bx+C;Cy B+wCz wC 

CZ c 
A 0  A uB vC 

T = T D T R = (  - BX B :) T = T L T D = ( :  
cy cz c W E ) .  

The following non-trivial commutation relations from (5) for the 'new' generators are 
vw = qwu uv = quu quw - wu = b u  
X Y  = qYx YZ = qzy x z  - q-'zx Ay 

uB = qBu uc = cu Au = quA 
vc = ~ q c v  uB = Bu AV = quA 
w c  = q c w  wA = wA B w = q w B  

x B  = qBx xc = cx Ax = q x A  

zc = q c z  Z A  = Az Bz = qzB.  
YC = qcY yB = By AY = qyA  

The quantun-deterEhant D,(T) = ABC commutes with all of the 'new' generators and, 
hence, with T and T. 

Applying the usual comultiplication A ( T )  = T(c3)T in GL,(3) and denoting 

Q = Y @  U + Z  @I w + 18 1 

E = 1 + ~ i ~ z  - (XIUZ + WZ)Q-'CV~UZ + Z I )  

K 

yivz + Z I W Z  + I 

(1 - uzE-'L -.uzQ-'[yi - (yluz +zl)E-lL]) 
where L = [xl -(xlvz+w~)Q-'yl], one can obtain the following expressions for inheritable 
comultiplication: 

A ( A )  = A I K A z  A ( B )  = BlEBz A ( C )  = CiQCz 

A(u)  = U I  + Aiuz(BiE)-' - AIVZQ-'(YIUZ + ZI) (BIE)- '  

A(u) = U I  + ( A i ~ z + ~ i B i ( ~ i ~ z +  WZ))Q-'C;' 
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A(w) = W I  + B I ( X I U Z  + WZ)Q-'CT' 

A ( x )  = xz + (EBz)-'[xi - ( X I ~ Z +  W Z ) Q - ~ Y I I A Z  

A(Y) = Y ~ + C ; ~ Q - ' ~ Y ~ A Z + ( Y I U Z +  Z I ) B ~  

A(-?) = C; Q (YIUZ + Z ~ B Z  + Z Z .  
I -1 

We recall that A1 = A @ 1, A2 = 1 @ A,  etc. As was Eointed-out above, there is a 
'natural' comultiplication, togethet with 'inheritable' one, in T and T. These two maps are 
not equivalent because they give obviously different expression for the element C = T33. 
Therefore, we are dealing with new quantum groups. 

For the quantum group generated by the elements of the matrices TR, TD, TL the natural 
Hopf algebra structure defined in proposition 4@) is given by the following expressions: 

A ( A )  = A @ A  A(B) = B @ B  A(C) = C @  C (14) 

It is not difficult to check that the matrices 
A-' 0 

B-I ) -qA-'x 
q2A-'(xz - q y )  -qB-'z C-I 

- ( A i 1  -q;A-' q - ' ( u w - ~ ) A - I  
T-'= 0 B-' -q-'wB-l 

C-I 

are the two-sided inverse matrices of the T" and p, respectively. Therefore, the antipodes 
and counits can be determined according to (3). At the element level one has 

S(A)  = A-' S(B) = B-1 S(C) = c-1 

S ( X )  = -q2A-'Bx = -xA-'B 

S(z) = -q2B-'Cz = -zB-'C 

S(y) = q3A-'C(xz - q y )  = ( Z X  - y)A- 'C 

S(u) = -q-'BuA-' = -BA-lu 

S(w) = -q-'CwB-' = -CB-'w 

S(u) - q-'C(uw - u)A-' = CA-'(uw - V )  

&(A)  = E(B)  = &(C) = 1 &(U) = &(U) = E ( w )  = 0 & ( X )  = &(Y) = &(Z) = 0. 
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With these definitions the Hopf algebra axioms [l] are satisfied. As a result, the algebras 
associated with T and matrices are endowed with a Hopf algebra structure. Therefore, 
they can indeed be considered as new quantum groups. 

In conclusion we write down the q-bosonization of the GL,(3) using the solution (12) 
of the equations (11). So, taking the three q-l-oscillators (7) aqd the three q-oscillators (8), 
and using (9), (lo), one gets 

I t  w = hq- %a3 I t  I Nz t U = bq- a,a2 U = hq- q alas 
x -hqb,bl t y = -hqq-M2bibl z = -hqb3bz t 

A = q N ~ - M ~  B = q N ~ - M z  A = qN3-M3, 

For the original GLq(3)-generators this gives 

G I  = qN'-M' - qh2qN'-M' [alazblbl + qN3-M3ata 1 3 3 1 1  bib 

GZ = A.4- I [ ala2q t 

T13 = Aq-1ala3qN2+N3-M3 

TZl = -hq [q  N r M z  b2bl t +hqN3-M1-M2ata btb 

T ,  = qN2-Mz - h2qN3-M>aia bib 

Nz-Mz - AqqNa+NrM3ata 1 3 3 2 1  bib 

2 3 3 1 1  

2 3 3 2  

NI-MI t Tu = hq a2m 

2 T33 = qN3-Ma. Ns-Mz-MI b3al t T32 = --hqqN3-M3btb T31= -hqq 
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